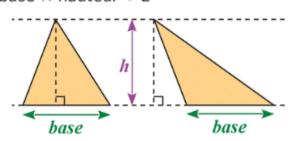
Chapitre 12 - Grandeurs, mesures et espaces

Compétences à valider :

- Savoir utiliser les formules d'aires et de volumes
- Savoir utiliser les grandeurs composés.
- Savoir contrôler la cohérence de ses résultats du point de vue des unités des grandeurs composés.

I. Calculs d'aires

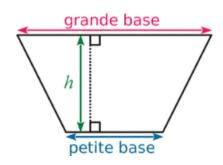
On rappelle les formules d'aires pour les surfaces les plus usuelles :

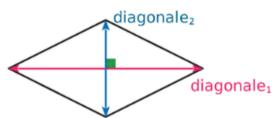

Formules d'aire

Rectangle : $A = \text{Longueur} \times \text{largeur}$

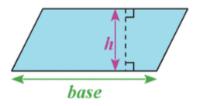
Carré : $A = côté^2$

Triangle quelconque :


 $A = base \times hauteur \div 2$

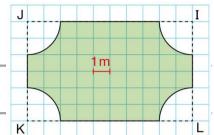

Disque : $\mathcal{A} = \pi \times \text{rayon}^2$

Trapèze:


 $\mathcal{A} = \frac{(\text{grandebase} + \text{petitebase}) \times \text{hauteur}}{2}$

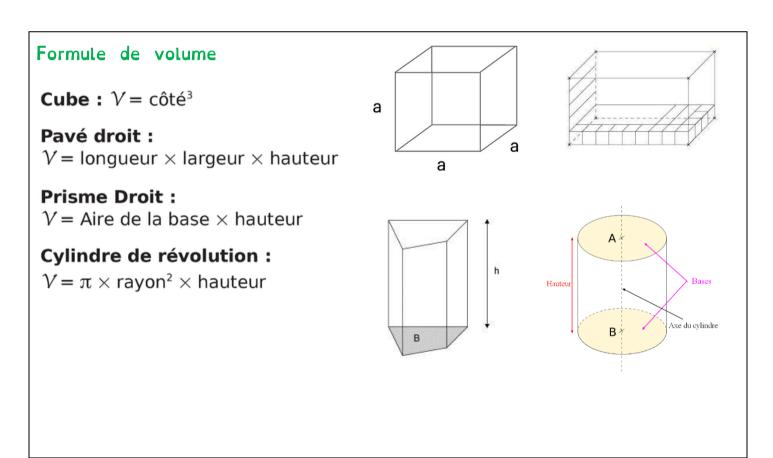
Losange: $A = \frac{\text{diagonale}_1 \times \text{diagonale}_2}{2}$

Parallélogramme : \mathcal{A} = base × hauteur



Enveloppe latérale d'un prisme droit ou d'un cylindre de révolution :

A = Périmètre de la base × hauteur


Sphère : $A = 4 \times \pi \times \text{rayon}^2$.

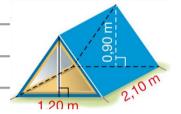
Exemples : Donner une valeur approchée au centième près de l'aire, en m², de la surface verte.

II. Calculs de volume

On peut définir le volume d'un objet comme un « empilement » de surface identiques, ce qui nous donne les formules suivantes :

Conversion volume:

A savoir.


$$1m^3 = 1000L$$

$$1cm^3 = 1mL$$

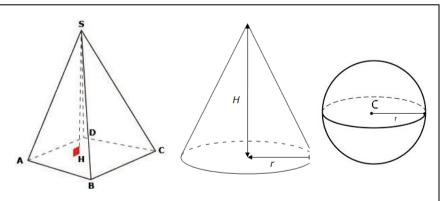
km ³		hm ³		dam ³		m ³			dm^3			cm ³			mm ³					
											k ℓ	hℓ	dal	ℓ	$d\ell$	cl	mℓ			
											2	5	7	0						

$$2,57 m^3 = 2 570 dm^3 = 2 570 \ell$$

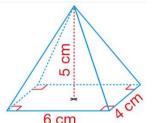
Exercices: Cette tente a la forme d'un prisme droit. Calculer son volume puis convertir en litres.

Pour certains volumes, les formules sont un peu plus complexes :

Pyramide:


$$V = \frac{\text{Aire de la base} \times \text{hauteur}}{3}$$

Cône de révolution :


$$V = \frac{\pi \times \text{rayon}^2 \times \text{hauteur}}{3}$$

Boule:

$$\mathcal{V} = \frac{4}{3} \times \pi \times rayon^3$$

Exer	cices	:	Une py	/ramide	a une	base	rectan	gulaire	de d	dimensio	ns 4	cm	et
6cm	et	sa	hauteur	mesure	5cm.	Calcu	ıler le	volume	de	cette	pyram	nide.	

III. Les grandeurs produits ou quotients

Définition : Une grandeur produit

Une grandeur produit est obtenue en multipliant deux (ou plus) grandeurs.

Exemples:

- → L'aire est donnée en mètres carrés : $m \times m = m^2$ ou $cm \times cm = cm^2$
- \rightarrow Le volume est donné en mètres cubes : $m \times m \times m = m^3$
- ightharpoonup L'énergie électrique est donnée en kilowattheure : $kW \times h = kWh$

Exercice : L'énergie consommée par un appareil électrique est une grandeur produit donnée par la formule : Energie = Puissance × temps

Si la puissance de l'appareil est exprimée en W (watts) et le temps de fonctionnement en heures alors l'énergie consommée s'exprime en Wh (Watts-heures).

Un radiateur d'une puissance de 800W fonctionne pendant 2h, quelle est sa consommation ?

Définition : Une grandeur quotient

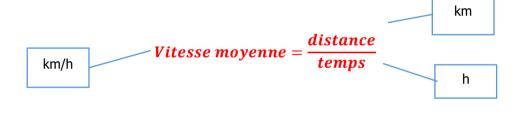
Une grandeur quotient est obtenue en divisant une grandeur par une autre.

Exemples:

- → Le prix peut être une grandeur quotient : €/kg (le prix au kilos) ou €/L (le prix au litre).
- → La consommation d'essence L/100km (le nombre de litres pour 100km)
- → La densité de population avec hab/km² (le nombre d'habitants par kilomètre carré)

Exercice : Le débit d'un robinet peut être donné entre autres en m^3/h ou en L/s.

Sachant qu'il s'est écoulé 60 litres en 5 min, calculer le débit du robinet en L/min puis convertir en m^3/h .


Remarque : On peut exprimer les grandeur quotient avec le symbole « / » ou bien utiliser une écriture avec « -1 », c'est la même chose.

€/kg peut aussi s'écrire $€ × kg^{-1}$

Une grandeur quotient : La vitesse moyenne

Lors du déplacement d'une voiture, la vitesse n'est pas constante. On freine, on accélère, on peut s'arrêter à un feu...

→ La vitesse moyenne est la vitesse qu'aurait eu la voiture si elle avait parcouru la même distance avec le même temps tout en conservant toujours la même vitesse.

Exercices : Un automobiliste effectue 225km en 3h de trajet. Calculer la vitesse moyenne du véhicule.